
Comp 127: OOP and Abstraction Fall 2025 

Course Description 
What happens as programs grow large and complex? How do we break a large program into 
manageable pieces? How do we make those pieces reusable beyond their original context, and 
their original author? Programming is a deeply complex, collaborative, and human endeavor. 
How can we humans, with our human minds, work with computers and each other to create 
something of value? 

This course is an introduction to the way software developers create structure in code. It 
provides practical experience: it is a heavily hands-on course, and you will spend time building 
the skills necessary to create software using many of the same tools that professionals use to 
build it. 

However, at least as importantly, this course is a grounding in underlying principles. In the fast- 
changing world of software, no matter what you learn today, rest assured you will need to learn 
something unfamiliar tomorrow! This course will give you groundwork to recognize the familiar 
in the unfamiliar, and stay adaptable by anchoring your learning in things that have remained 
present through programming’s many topsy-turvy years. 

In this class, you will learn about subject matter in three general categories: 

• Concepts: These are the ideas of which code and code structures are made. They take on 
many forms, appear in many contexts, and apply across many programming languages and 
kinds of software. Examples include: abstraction, classes and objects, encapsulation, type 
systems, ASTs, polymorphism, closures, APIs, separation of concerns, contracts, 
immutability, and parallelism. 

• Practices: These are the processes and habits developers use to build software. They are 
the heart of the software practitioner’s craft, and are not so much about what the code is as 
they are about what the programmer does. Examples include refactoring, testing, pairing, 
versioning, diagramming, writing for readability, documenting, and debugging. 
Collaboration and communication are recurring themes through all of these. 

• Tools: We will work with many tools professional software developers use on projects out 
in the wild, most notably Java, Git, GitHub, Visual Studio Code, JUnit, and Slack. Each of 
these tools is practical and useful in its own right! However, each is also a path to deeper 
learning about concepts and practices. Thus, you should not think of this as a “Java course;” 
it is a course that uses Java to teach the important concepts and practices of software 
development. 

Class 
MWF 10:50 – 11:50 AM 

Final project celebration 
Mon, Dec 15, 10:30 AM – 12:30 PM

Instructor Paul Cantrell	 pcantrel@macalester.edu 

	 he/him or they/them	 cantrell@pobox.com 

	 Addressing me as “Paul” is fine	 Note: only one L in Macalester email! 
Contact / Help / Support options 

• Use preceptor office hours (schedule on course site) 
• Contact me online via Slack or email 
• Self-schedule an office hours appointment

mailto:pcantrel@macalester.edu
mailto:cantrell@pobox.com?subject=
https://calendly.com/macalester-pcantrell


You can find a detailed overview of course content in our Comp 127 Learning Goals. 

A Word of Warning, and of Encouragement 
Programming is fun! But programming can also be extraordinarily, crushingly frustrating. (Yes, for 
everyone, even your instructor!) Sooner or later you will get stuck. This never goes away; even 
the most experienced developers spend lots of time stuck and frustrated. The difference is that 
the experienced developer knows how to work through it, both technically and psychologically. 
Learning to deal with frustration is one of the most important parts of being an effective software 
developer. 

The secret to learning? Seek help early and often! If you get stuck, yes, do wrestle with it on 
your own for a little while, but remember that the assignments are designed to make you need 
help. Look at the How to get help section on Moodle. It’s at the top for a reason! 

Talk with each other, share programming tips, and cheer each other on! (However, see notes 
below on collaboration vs. copying and what constitutes cheating.) 

Coursework 
Readings and Course Tasks 5% 
There will be approximately 20 reading assignments and course tasks. Sometimes they will 
include questions for you to reflect on. Sometimes there will be a job you need to complete. 

Readings are due one hour before class. To receive credit for the readings, post questions or 
observations about the readings in our Slack channel, #comp127-f25. For full reading credit, 
post at least one question or thought about the readings each week, at any time during the 
week. You do not need to post a question or thought in response to every single assigned 
reading, though I encourage you to ask as many questions about the reading content as you 
like. I also encourage you to read the questions other students asked, and the responses to 
them. 

Among the course tasks I will ask you to complete is to attend at least three MSCS department-
sponsored events during the semester. This can include department seminars, Beyond Mac, 
coffee breaks, and capstone presentations. Instructions for receiving credit are on Moodle. 

In-class activities and take-home exercises 15% 
We will spend much of our in-class time doing practical programming activities. No matter how 
many concepts you understand, you can only learn programming by doing it. 

The activities are for practice, what matters with these is effort. Any reasonable attempt at most 
of the activity counts. These are much like practicing a musical instrument, or doing a daily 
workout: simply putting in the time and energy is the main point. We will use pair programming 
for all activities, because communication with humans is a crucial part of software development. 

There are about 6 take-home exercises in the course. These are more in-depth solo 
programming efforts. I grade them for completion, not correctness: reasonable effort receives 
full credit, even if there are some problems with your solution. You should complete each take-
home exercise within one week of when the exercise was originally assigned. 

https://docs.google.com/document/d/1TnWvgJ_ENzJ3siwFgmCHsfdT6pTzBNz3zmX-MSuY6g0/edit


Homework 40% 
There will be approximately 6 homework assignments in the course. We (preceptors and 
instructor) grade these for correctness and quality. With the exception of the first homework, 
(which is toy-sized, just for everyone to practice the process), the homeworks involve larger, 
more complex coding tasks than the activities and take-home exercises. Larger homework 
assignments will be worth more points. Preceptors help grade the homework. Because of the 
labor involved in homework grading, it is especially important to respect the homework due 
dates. If you will need extra time for an assignment, talk to your instructor in advance (see “Late 
work” below). 

Conceptual mastery puzzles	 15% 
You are not only learning to build software, but also learning to think about software. For some 
aspects of software development, it is good to treat the computer as a partner and let it assist 
you. However, there are some fundamental concepts you should be comfortable reasoning 
about in your own head, without leaning on the computer for assistance. 

To help you build this conceptual mastery, you will do puzzles of different types, each type 
associated with a specific conceptual mastery goal. We will give you software that can generate 
an infinite stream of puzzles (and solutions) of each type. You can practice these puzzles as 
many times as you want, whenever you want. 

When you feel you are ready, you can attempt one of these puzzle types for credit. When you 
make this official attempt, you can use notes but not your development tools. Remember, no 
leaning on the computer for assistance! I will grade your attempt for precise correctness. You 
can receive full credit, half credit, or no credit. 

Here’s the catch: you can attempt each goal repeatedly. Your final score for each conceptual 
mastery goal is the best score your received. This means that you have many chances to do well 
in each goal. If you do badly on the first try, don’t panic! That bad attempt doesn’t permanently 
bring down your final score. It just means you need to try again. 

Course Project 25% 
At the end of the class, you will create a programming project of your choice with a partner or 
two. This is your chance to stretch your legs, apply what you have learned, be creative, and have 
fun building some software. 

Policies 
Copying code 
Programming is a social activity, and I encourage you to seek out help from your instructor, your 
preceptors, your fellow students, and the web. Collaboration is good; however, cheating is not. 
Copying any code you did not write without attribution is cheating, and under many 
circumstances, copying code is a federal crime. (This is true even if you modify what you copy.) 

It can be difficult to understand the line between copying and assisting, so I’ll give you the 
following guidance: 



• Do not share your code for take-home exercise and homeworks with other students. 
(Sharing and comparing code for in-class activities is OK.) 

• Do not look at somebody else’s source code for a homework solution (except for the one 
exception noted below). 

• Do not communicate with each other during exams. 

The one exception to these rules is that you may help somebody debug their code for a take-
home exercise or a homework problem which you have already solved yourself. 

If someone helped you with a problem, acknowledge their help on the assignment with a 
comment in the code. I will never dock points for acknowledging the help of others, and 
crediting help you received helps mitigate any suspicion of cheating. So that I have a sense of 
how many students are reading this syllabus, please email me a picture of a hydrozoan. 

If you copy code from a public reference (e.g. Stack Overflow, blog, tutorial, docs), you must: 
make sure that you have the legal right to copy it, and add attribution the code’s origin. (In 
most cases, it is sufficient to add a comment in the code with the URL of your source.) 

The act of turning in copied code without attribution is a violation of Macalester's academic 
honesty policy, and is subject to disciplinary action according to college rules. The disciplinary 
process is not fun for either of us. Please don’t. 

Using AI / LLMs 
In this class, using any form of AI-generated code on in-class activities, take-home exercises, 
homeworks, or conceptual mastery puzzles also counts as cheating. This includes but is not 
limited to code generated by GPT and Copilot. Don’t. 

Why? The exercises and homeworks in this class ask you to puzzle out for yourself things that 
many, many other people have puzzled out before. The learning comes from you doing the 
puzzling, not from you producing correct output. 

AI can easily regurgitate other people’s solutions to familiar problems; for familiar questions, it 
often ends up functioning as a plagiarism tool. If AI does that for you in this class, it robs you of 
your learning. The activities, take-home exercises, and homeworks in this class are a bit like 
lifting weights: other people have done it many times before, and it’s easy to make a machine 
do it; it is you doing it that matters. If you had a machine lift weights for you, would you expect 
to build muscle? 

You are allowed to try out AI-generated code for your course project, although I don’t 
particularly recommend it. I will provide more guidance when assigning the projects. 

Late work 
You will hand in all your homework online. If technical troubles are preventing you from 
handing in your assignment, contact me immediately, even if it is the middle of the night! I will 
respond when I am able. 

You may also have non-technical troubles preventing you from handing in an assignment. We all 
have lives, and sometimes things come up. I understand. If circumstances will force you to do 
work late, talk to me before the assignment is due. My goal is to make this course the best it 



can be for all of us, students and instructor, within the constraints that we have. That means I will 
happily do what I can to accommodate you if you are facing a difficult situation or a time 
crunch, but that can only work smoothly if you talk to me in advance. Late work impacts the 
preceptors, your instructor (me), and your own learning. Late work thus requires planning. Think 
ahead! Communicate! 

If you have not been in communication with me about late work, then assignments incur a late 
penalty in proportion to the time past due, with credit continuously decreasing to zero over 
the course of one week. This late policy means that it is in your interest to hurry up and finish 
your assignment even if it is already late. Don’t delay! Don’t feel guilty! Just get it done! Note 
that this policy means that if you are going to miss the deadline by a few hours, it is far better to 
finish your work properly than to hand it in half-done. 

Questions about grades 
Preceptors typically grade exercises and homework assignments via Github Classroom using 
Pull Requests (PRs). You may receive notifications of comments during the grading process. It is 
critical for preceptors to finish their grading process uninterrupted. We ask that you wait until 
the whole assignment is graded before asking any questions regarding grading. Once you have 
complete feedback on the whole assignment, you are welcome to contact the instructor for 
clarification. Do not contact preceptors about grading questions. Do not contact the 
instructor through multiple redundant channels. 

Classroom Inclusion and Community Guidelines 
Macalester College values diversity and inclusion. We are committed to a climate of mutual 
respect, free of discrimination based on race, ethnicity, gender identity, religion, sexual 
orientation, disability, and other identities, in and out of the classroom. This class strives to be a 
learning environment that is usable, equitable, inclusive, and welcoming. 

To help support these goals, we expect you to follow the MSCS Community Guidelines. 
These guidelines were created by the MSCS faculty and staff in our ongoing efforts to create a 
community that is more welcoming, supportive, and inclusive. They describe our expectations 
and how to respond to or report issues that arise. If you anticipate or experience any barriers to 
learning, please talk to your instructor, or see the guidelines document for how to raise your 
concerns. 

Support and Well-Being 
All of us — you, me, your other professors, your fellow students — are human beings. 
All of us carry our own experiences, thoughts, emotions, needs, and hopes with us, 
including in class. All of us have bodies and minds that need care. Please do what you 
need to do to take good care of yourself, and make our class a good experience for 
yourself and your fellow students. In the classroom, eat if you are hungry, drink if you are thirsty, 
and step out if you need a break. Outside of the classroom, take the time to sleep well, eat well, 
and connect with others — even when life is busy and the pressure is high. If you are feeling sick, 
stay home. We keep each other safe! And when you need help, reach out. 

https://docs.google.com/document/d/e/2PACX-1vSlLLWmyOf8WKGDKJ_qypgA_kQI1dNFGEKH0mtFoqfAUARZN7ypVCgivnmPjccks9jJzW1rgEzt7QMI/pub


I put the paragraph above in my syllabus every term. It is especially important right now, during 
a time of multiple ongoing crises in the larger world. We urgently need to be present for each 
other, and present for ourselves. Our physical and mental health depends on all of us taking 
care of ourselves and each other. 

I am committed to providing assistance to help you succeed in this course. I love programming, 
and I hope you will love it too. I am living through these difficult times preserving my spirit as 
best I can, and I want to help you do the same. 

If anything poses a risk of interfering with your ability to thrive in this course or on this campus, 
please discuss it with me. This includes health issues (both mental and physical), disabilities 
(both documented and undocumented), schedule conflicts, competing obligations, life 
changes, and personal challenges. We will talk about what you need, and form a strategy for this 
course together. You don’t need to share any more personal detail than you are comfortable 
sharing. Just let me know that you need support, and I will do my best to support you. 

Official accommodations are available for students with documented disabilities. Contact 
disabilityservices@macalester.edu to make an appointment, and visit Macalester’s Disability 
Services site for more information on the accommodations process. Note that even if you do 
have an official accommodation, it is still your responsibility to contact me. 

Please communicate with me. No matter whether you have a sticky personal situation, a vague 
concern, or a struggle that is impacting you and your work, no matter whether it is officially 
recognized by the college or not, please communicate with me. I will try not to ask for details 
you are not comfortable sharing, but I do want the chance to help you out. The golden rule: 

Never suffer in silence! 

Never. I am here to support you. I know it can be hard to ask for support when you most need it. 
When that time comes, remember that I want you to ask. 

mailto:disabilityservices@macalester.edu
http://www.macalester.edu/studentaffairs/disabilityservices/
http://www.macalester.edu/studentaffairs/disabilityservices/

	Comp 127: OOP and Abstraction Fall 2025
	Course Description
	A Word of Warning, and of Encouragement
	Coursework
	Readings and Course Tasks 5%
	In-class activities and take-home exercises 15%
	Homework 40%
	Conceptual mastery puzzles 15%
	Course Project 25%

	Policies
	Copying code
	Using AI / LLMs
	Late work
	Questions about grades

	Classroom Inclusion and Community Guidelines
	Support and Well-Being


